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A Methodology for Hardware Verification
Based on Logic Simulation*

Randal E. Bryant

Computer Science Department

Carnegie Mellon University

Pittsburgh, Pennsylvania 15217

June 8, 1987

Abstract

A logic simulator can prove the correctness of a digital circuit if it can be shown that
only circuits implementing the system specification will produce a particular response
to a sequence of simulation commands. This style of verification has advantages over
other proof methods in being readily automated and requiring less attention to the
low-level details of the design. It has advantages over other approaches to simulation
in providing more reliable results, often at a comparable cost.

This paper presents the theoretical foundations of several related approaches to
circuit verification based on logic simulation. These approaches exploit the three-
valued modeling capability found in most logic simulators, where the third value X

* indicates a signal with unknown digital value. Although the circuit verification problem
4 is NP-hard as measured in the size of the circuit description, several techniques can

reduce the simulation complexity to a manageable level for many practical circuits.

1 Introduction

Logic simulators provide a valuable tool for testing the correctness of digital circuits.
Typically, however, only a limited set of test cases is simulated, and the circuit is presumed
correct if the simulator yields the expected results for all cases. Unfortunately, this form of
simulation leaves the designer uncertain that all circuit design errors have been eliminated.

*This research was supported by the Defense Advanced Research Projects Agency, ARPA Order Number
* 4976.



Stories abound of errors that remain undetected despite many hours of simulation and even
actual circuit operation. Conventional wisdom holds that logic simulators are incapable

~ of more rigorous verification. They are viewed in the same class as program debuggers-

useful tools for informal testing, but nothing more.

Formal verification involves proving that, under some abstract model of system operation,
the circuit will behave as specified for all possible input sequences. A formal proof gives

* strong confidence that the circuit will function correctly. In this paper, we will show that

a logic simulator can form the basis of a formal verifier. At first, this claim might seem
both obvious and of little practical value, since most systems are too complex to simulate
exhaustively. We will argue to the contrary on both points. When the circuit has potential

* for sequential behavior, even simulating all possible input patterns may fail to detect an
error. Furthermore, verification by simulation can be made practical for a significant class
of circuits.

Formal verification does not guarantee that the actual circuit will operate properly. The
assumptions made in the abstract model may not hold in the physical implementation.

For example, most methods of verifying digital systems assume that the circuit adheres
to a logic abstraction whereby all signals can be represented by discrete values. Without
such an abstraction, verification would be tedious, if not impossible. Design errors that

cause marginal, nondigital circuit behavior may not be detected by verification against
such a model. Similar problems arise in program verification. For example, most proofs
of program correctness abstract the finite arithmetic implemented by computers as oper-
ations over the integer or real domain. A verification against such a model cannot detect

* - errors due to arithmetic overflow or underfiow. In discussing formal verification, we must
remember that the level of confidence it provides is only as strong as the degree to which
the abstract model matches actual system operation.

1.1 Structural Approaches

Most hardware verification methodologies 11,2,16,17,21,22,23,24] utilize structural tech-
niques. In such an approach, the circuit is described hierarchically, where a component
is defined at one level in the hierarchy as an interconnection of components defined at
lower levels. The system specification consists of a description of the behavior of every
component at each level of the hierarchy. Verification then involves proving that each com-
ponent implements its part of the specification, assuming that its constituent components

% implement theirs.

Structural verifiers have several noteworthy strengths. They can exploit the circuit hier-

archy to reduce proof complexity, since a proof is required only for each unique circuit
component. Many large, but highly structured circuits have been verified structurally.
Second, they can naturally be extended to parameterized circuit descripi ions, proving the

2



correctness of entire families of circuits [9 . Finally, structural verifiers can apply different

modeling abstractions according to the level in the hierarchy, such as representing signals

at lower levels as bits and at higher levels as integers [2].

On the other hand, these verifiers have several shortcomings. Even when automated, they

require the user to specify the intended behavior of each component in the circuit hierarchy.
The verifier serves largely as a "proof checker", making sure that each component fulfills
its specification. Many circuits are not designed to facilitate component specifications,
and hence verification requires much tedious effort on the part of the user. Consider, for
example, an adder circuit that utilizes carry-lookahead. Although the addition function
is straightforward to specify, the low level details of the implementation are complex.

Furthermore, the circuit contains many different component types and hence requires a

lengthy specification and verification. For such a circuit, a verification method that allows
the user to deal with the overall input-output behavior would be far preferable.

As a second shortcoming, most structural verifiers use highly simplified models of electri-
cal and timing behavior to make the proof and component specifications tractable. Most
assume, for instance, that the circuit components operate as unidirectional logic elements
computing outputs in response to their inputs. In actual circuits electrical behavior can
be far more subtle, such that the behavior of a component depends on its operating envi-

ronment. As an example, the direction of information flow through a CMOS transmission
gate is determined solely by the driving capabilities of the circuitry at either end [10].
Clearly, any specification of such a gate must include restrictions on the environment in
which it is placed. As a notable exception to these highly simplified models, Weise [23,24]
has developed a verifier that proves the correctness of MOS circuits under a model that
includes detailed electrical and timing information. His verifier automatically checks every
environment in which components are placed for compliance with the preconditions for
correct operation. In general, however, prospects do not look good for automating struc-
tural verifiers to the point where circuits can be verified with little manual effort and with
realistic circuit models. Formulating the proper set of assertions about each component
requires a more sophisticated reasoning capability than will be automated in the near
future.

1.2 A Behavioral Approach

This paper proposes a behavioral approach to circuit verification. In this approach, the
verifier applies logic simulation to compute the circuit response to a series of stimuli chosen

to detect all possible design errors. The user is freed from the tedium of proving the
correctness of every component. Instead, the circuit is viewed at a higher level in terms of

its desired input-output or state transition behavior. More realistic circuit models can be
used, because only the simulator need be concerned with the modeling details.

04, 3



Although this approach to hardware verification overcomes several weaknesses of structural
verifiers, it cannot match some of their strengths. Simulation cannot exploit hierarchy very
effectively, because the different instances of a component can have different stimuli and
hence must all be evaluated. There is also no known way to simulate an entire class of
circuits in a single run. Perhaps the ideal verifier would combine both styles. A hybrid
approach would use behavioral verification to prove the correctness of a set of components
forming some intermediate level in the circuit hierarchy. This would avoid the need to
specify the behavior of the low level components and could employ the detailed circuit
models required at these levels. Structural verification would then be applied to the
hierarchical composition of the intermediate components, exploiting the regularity of their
interconnections and their higher abstraction levels. Thus the work presented here should
be viewed as complementing structural verification, rather than seeking to replace it.

1.3 Overview of the Methodology

The task of evaluating a circuit by simulating its response to a set of stimuli relates closely
to the "machine identification" problem first described by Moore [181. He showed that,
in general, no finite set of stimuli could fully characterize the behavior of a sequential
system. He suggested overcoming this problem by fixing an upper bound on the total
number of system states. Unfortunately, for circuits of significant size, this bound is too
high for Moore's identification algorithm to be practical. Instead, our method overcomes
the identification problem by simulating the behavior over a three-valued domain with con-
ventional Boolean values 0 and 1, plus a value X representing an undefined or uninitialized
signal. Such a capability is found in most logic simulators [12]. In addition to supplying
input patterns during simulation, we assume that the user can issue ERASE commands,
causing all state variables to be set to X. Although the power of three-valued simulation
has been studied extensively in the context of hazard detection [6,15,25], its potential role
in circuit verification has not been widely recognized.

In the interest of generality and simplicity, the paper views hardware specification, circuit
behavior, and logic simulation in a rather abstract way. The desired behavior is specified
by a (Moore model) finite state automaton. The circuit is also a finite state automaton,
with a particular binary coding of the states. Although this is an unconventional view

,.• of a circuit, we will argue its appropriateness for behavioral verification, where the focus
is on how the circuit operates rather than how it is constructed. Circuit verification

involves proving that the specification and circuit automata have equivalent input-output
behavior. The simulator models the behavior of the circuit automaton, computing new
state and output values in response to inputs supplied by the user. A mild, monotonicity
property is imposed on the simulation of three-valued behavior to capture the notion that
X represents an unknown or ambiguous digital value.

-:. _ The style of simulation required to prove correctness depends on the nature of the system

04 4".M ,
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specification. A definite system [14,191, for which the behavior depends on only a bounded
number of previous inputs, can be verified by straightforward "black-box" simulation.
Black-box simulation involves simply observing the output produced by the simulated
circuit in response to a sequence of input and ERASE commands with no consideration
of the internal circuit structure. Verifying the implementation of an indefinite system,
on the other hand, requires a more implementation-specific "state transition" simulation.
With this method, key circuit state variables are identified, and the different possible state
transitions simulated. In either case, the verification requires little, if any, understanding
of the detailed circuit design.

Circuit verifiers can err in two different ways. One that rejects a correct circuit gives a

false negative response, whereas one that accepts an incorrect circuit gives a false positive
response. This paper is concerned mainly with avoiding false positive responses. Such a
response has more potential for danger-it may cause a defective design to be implemented
or put into service. Furthermore, deciding whether a simulator has produced a false
negative response requires more detailed information about the circuit electronics and the
simulation algorithm than can be presented in a general way. However, for the simulation
sequences presented in this paper, a false negative response must have a particular form,
namely the simulator will produce X on some output when 0 or 1 was expected.

As mentioned earlier, any approach to formal verification guarantees proper circuit opera-

tion only if the assumptions made in the abstract model hold in the circuit implementation.
For the case of simulation-based verification, we must assume that the actual circuit be-

-. haves identically to its simulation. When a circuit has been "verified" by simulation, it
simply means that it has no errors that could be detected by simulating additional pat-
terns. It is important to maintain this perspective on the problem addressed by this paper.
It reflects a weakness intrinsic to any approach to verification and not to simulation alone.

1.4 Contents of Paper

This paper presents both theoretical and practical aspects of a hardware verification
methodology based on multi-valued logic simulation. Section 2 illustrates the key ideas by
means of several circuit examples. Section 3 gives a notation and mathematical background
for describing system specifications, digital circuits, logic simulators, and the verification

4 problem. Section 4 gives a formal characterization of the capabilities and limitations of
black-box simulation. Section 5 shows how these limitations are overcome by state tran-

* sition simulation.

Section 6 discusses methods to improve the computational efficiency of the verifier. Two
methods are proposed to reduce the computational effort in verifying large digital systems:
input weakening and symbolic simulation. Input weakening involves using the value X on
an input to represent "don't care", thereby reducing the total number of patterns that need

o 5
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. to be simulated. Symbolic simulation involves augmenting a simulator with a symbolic
Boolean manipulator to compute the behavio" of the circuit over input patterns containing
Boolean variables. Section 7 demonstrates a practical application of the methodology to
the verification of a random-access memory. By exploiting input weakening, an n-bit
memory can be fully verified by simulating O(nlogn) patterns, even though the circuit
has 2' possible states. Section 8 concludes the paper with a discussion of the method.

All circuit examples shown in this paper are designed in MOS technology. This choice
reflects the historical background of the research as well as the belief that MOS circuits
form a particularly difficult class for hardware verification. In particular, state can be
stored as dynamic charge on capacitive nodes. Unlike circuits where all state is stored
in feedback loops, there is no straightforward way to identify all state variables. In fact,
design errors commonly introduce unintended state variables and sequential dependencies.
The methodology presented here, however, applies to most digital technologies, with the
caveat that circuits are assumed to operate on synchronized input data. Asynchronous

* systems seems to call for more powerful class of verification tools, such as the model checker
of Clarke, et al [3,7], since they cannot be viewed simply as processing a single sequence
of input data.

This research provides two major contributions to the state of the art in circuit validation.
First, it presents a simple, yet powerful, method of proving the correctness of digital

. hardware. Second, it provides insights into ways to better utilize a simulator even when
only informal validation is sought. It shows that by exploiting a latent capability found
in most logic simulators, namely three-valued modeling, more rigorous validation can be
obtained at comparable cost.

2 Verification Examples

* Before proceeding with the mathematical formalism, we present the main concepts via
several circuit examples. These examples illustrate several pitfalls of simulation and how
three-valued modeling can be exploited to overcome them.

* 2.1 Definite Systems

Consider the seemingly simple task of proving that a circuit implements a NOR logic gate.
Figure 1 shows two proposed implementations in CMOS technology [10]. If we were to
simulate these circuits using a simulator that can model a MOS circuit at the transistor
level[4], the following responses would be produced when the input patterns are applied
in the sequence shown:

6



Incorrect Correct

B B

A A

OUT, OUT 2

Figure 1: Implementations of a NOR Gate in CMOS

A B OUT1  OUT 2

0 1 0 0
1 1 0 0
1 0 0 0

The two circuits appear identical for all possible input combinations, as they would be in
actual implementations of the circuits. However, only the second circuit is a valid NOR
gate. The first is a two-state sequential circuit, because when A =1 and B = 0, the
output node is electrically isolated from all others and remains charged at its previous
value. Due to the order in which the input combinations were applied, it just happened
that the previous value of OUT, equaled the value a NOR gate should produce for this input
combination. On the other hand, had this input combination been simulated immediately

- .. after the combination A =B =0, the output would have been 1.

This example illustrates a common problem in testing a circuit by simulation even when
rigorous verification is not sought. A design error introduces an unintended sequential
dependency in the circuit, but this error remains undetected because of the particular
order in which the test sequences are simulated. Clearly, such a condition is not acceptable
for formal verification.

Suppose, on the other hand, that an ERASE command is given before simulating each
input combination, causing all state variables to be set to X. Such a simulation would
produce the following results:
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A B f OUT1  OUT.

.o 0 1 1

1 1 0 0

1 0 X 0

The presence of an X on OUT 1 indicates that the output of this circuit may not be uniquely
defined when A = 1 and B = 0 (or it could be a false negative response by a valid circuit).
On the other hand, each input combination produces a unique response for the second
circuit, and since the responses match those of a NOR gate, one can conclude the circuit is
correct. This conclusion can be draw., without any further information about the structure
of the circuit or the number of state variables.

-.. A combinational system such as a NOR gate is 1-definite; its output at any time depends
only on the most recent input. The method shown above generalizes to any definite system

.:specification, where the output depends only on the most recent k inputs for some constant
k. That is, suppose for every possible input sequence of length k, setting all state variables
to X and then simulating the sequence yields an output equal to the desired value. One
can then safely conclude the circuit implements the specification.

Observe that this requirement for definiteness applies only to the system specification
and not to the circuit being evaluated. For example, the simulator is able to detect the
incorrect NOR gate even though the circuit itself is not definite. In particular, its output
depends on inputs that occurred arbitrarily long ago as long as A is held at 1 and B at 0.

2.2 Indefinite Systems

Many sequential systems are not definite. For example, a simple 1-bit latch has an output
* dependent on an input that occurred arbitrarily long in the past as long as no new value

is written into it (by setting its LOAD input to 1). For such a system, given any value
k, there will always be an input sequence of length k that does not cause the system to
produce a unique output. When simulating this sequence following an ERASE command,
even a correctly designed circuit will give an X on the output.

In Section 4 we will show that for any indefinite system, there is no way to prove that a
circuit implements its specification by simply observing the output values resulting from
a sequence of input patterns and ERASE commands. This general limitation of black-box
simulation can be illustrated using a 1-bit latch circuit. Consider a simulation sequence
that is claimed to detect any defective latch design. Since the sequence is finite, there
must be some value I such that the LOAD input is never held at 0 for I or more consecutive
patterns.

8
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DATA

OUTOU
:'*:' Latch

LOAD

.' CLEAR

1 -Bit Shift Register

Figure 2: Latch with Booby Trap

Consider the circuit of Figure 2 consisting of a correct latch with additional circuitry
implementing a "booby trap". Whenever a value is written into the latch, all bits in the
booby trap shift register are cleared to 0. The output of the shift register is EXCLUSIVE-

OR'ed with the latch output to produce the circuit output OUT'. Thus, the circuit behaves
as a proper latch as long as the shift register output equals 0. If no further data is written,
a 1 will shift through the register until it ultimately causes the circuit output OUT, to
be complemented. Clearly, this circuit does not behave as a latch should. However, the
proposed sequence does not cause enough consecutive shift operations for the defective

circuit to behave differently from the correct one.

Less obviously, even attempts to expose the booby trap by giving ERASE commands or
by giving input sequences containing X's will fail to distinguish the correot latch from
the circuit of Figure 2. Unlike the NOR gate example, any action that would cause the

*simulator to produce output X for the incorrect circuit would also cause it to produce
output X for the good circuit. Thus, the proposed simulation sequence cannot distinguish
between a correct circuit and this incorrect one. This argument holds for any simulationJ*** .1

sequence by making I sufficiently large.

OSi To verify indefinite systems, more information is required about the circuit state variables
and their relation to the states of the system specification. However, in the spirit of black-
box simulation, we would like to minimize the amount of detail about the circuit structure
that the user must provide. To achieve this goal, assertions about the state variables
and how they are transformed by the input values are expressed in a notation similar to
the Floyd-Hoare assertion method of program verification [8,11. Each assertion is then
verified by a short simulation sequence.

4 9
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-''" DATA Q•

:+.;Latch -- OUT

LOA

-+€ Figure 3: Latch Circuit

A circuit assertion, denoted by an equation of the form P { I } N A 0, consists of 4

predicates over the circuit input, output, and state variables. Predicate P specifies a
precondition on the state variables, I an action on the input variables, N a postcondition
on the state variables, and 0 a postcondition on the output variables. Each predicate is
the logical conjunction of terms of the form v = 1 or v = 0, where v is circuit variable. A
circuit assertion can be interpreted as a statement that for any circuit state satisfying P
and for any action satisfying I, the new circuit state will satisfy N, and the output will
satisfy 0.

As an example, consider an implementation of the 1-bit latch illustrated in Figure 3.
No internal details of the circuit are shown except that the bit is stored in a feedback
path containing two electrical nodes Q and Z. The following assertions specify the state

*: transition behavior of the circuit where a ranges over 0 and 1:

true I DATA = a A LOAD = 1 Q = a A i = a A OUT = a

Q=a A q=-a{ LOAD=0 Q=a A =--a A OUT= a

*. The first equation asserts that a write operation sets the state of a latch, while the second
asserts that the latch state does not change as long as no new data is written. In both
cases the value of OUT should equal that of Q.

0 Given an assertion P { I } NAO, its verification by simulation involves the following steps.
An ERASE command is given to set all state variables to X. For each term v = a in P
(respectively I), state variable v (resp. input variable v) is set to a. All input variables not

A occurring in I are set to X. The simulator then computes the resulting output and new
state. For each term v = a in N (respectively 0), state variable v (resp. output variable
v) is tested for equality with a. If all of these tests hold, then the assertion is proved.

For example, consider the latch circuit of Figure 3, and the faulty circuit formed by adding
the booby trap of Figure 2 to it. Simulating the four sequences specified by the assertions

510
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would yield the following results:

Initial Values Results
Q Q DATA LOAD Q Q OUT OUT'
X X 0 1 0 1 0 0

X X 1 1 1 0 1 1
0 1 X 0 0 1 0 X
1 0 X 0 1 0 1 X

The defective circuit passes the first two tests when new data is written, because this
causes the shift register to be cleared. For the final two tests, however, all state variables
with the exception of Q and q are initialized to X. The shift register output will remain
at X, causing an X to appear on OUT' and the tests to fail.

3 Mathematical Formulation

The examples of the previous section illustrate the main ideas of our verification method-
ology. We will now proceed with a more formal presentation, showing that these ideas
apply to general classes of circuits. This section develops a mathematical abstraction of
logic circuits, simulators, and the verification problem.

3.1 Notation

We adopt a notation that represents the system input, output, and state values as vectors.
The history of inputs applied to a system is denoted by a sequence of vectors.

%. p: the number of system inputs.

B: {0, 1}, the Boolean domain.

* B": {(Xi, . . x) E B}, Boolean vectors of size n.

* ,: all length I sequences with elements in BP.

: Uo<< 'D, all finite sequences with elements in BP.

T: {0, 1, X}, the ternary domain, partially ordered X < 1 and X < 0.

T": {(Xz, ... , z)Ixi E T}, ternary vectors of size n, partially ordered Y < if
xi !5 yj for all l <i < n.

-S.



i 'I: all length I sequences with elements in T P.

%P': Uo<< TI, all finite sequences with elements in T P, partially ordered

[d,...,~d] < [b,...,btl ifs < t and d,_, < bt, for all 0< i <s.

E: the empty sequence.

a • 3: the concatenation of sequences a and 13.

3.2 Information Ordering

The partial ordering X < 0 and X < 1 orders values by their "information content." That
is, X indicates an absence of information while 0 and 1 represent specific, fully-defined

- values. When speaking of domains ordered by information content values a and b are
said to be "consistent" if either a < b or b < a, and "inconsistent" otherwise. Value a is
"weaker" than b if a < b, i.e., a < b and a o b.

The information ordering is extended to vectors and vector sequences by adopting the
*' convention that one value is less than another if the elements of the first are consistent
- with those of the second, but the first contains less information. More precisely, for vectors

in T', one vector is less than or equal to another if each element of the first is less than or
equal to each element of the second. For sequences a, E %P, a is less than or equal to 0
if the elements of a are less than or equal to the corresponding final elements of 0. That
is, the history given by a is consistent with the most recent history given by 3, but may
contain less information. The motive for this convention on the ordering of different length
sequences will become clear when we study the monotonicity properties of the simulator.
As a special case, sequences of Boolean vectors, a,,3 E - , are ordered a < 1 when a is a
suffix of 13.

6 Definition 1 For partially ordered sets DI, D2 a monotonic function g: D, -- D2 satisfies

a < b _ g(a) g(b)

for all a, b E D1 . Similarly, a monotonic function with multiple arguments satisfies this
,6 property for each argument.

For any program that processes data ordered by information content, such as a logic
simulator, monotonicity expresses an important property. Suppose the program is given

a stimulus containing incomplete information, e.g., having some inputs equal to X. If
the program obeys monotonicity, it will produce a response consistent with but possibly
weaker than the response it would produce given a stronger stimulus.

0 12

r Iro~ < o,



Definition 2 For pa'rtially ordered sets D, and D 2 with subsets D' and D,', respectively,
a monotonic extension of function f: D, - D, is a function g: D, -* D 2 such that g is

monotonic and f (a) =g(a) for all a E Di. Similarly, a monotonic extension of a multiple

argument function must satisfy these properties for each argument.

As an example, the OR function can be extended monotonically from the Boolean to the
ternary domain in several different ways, including the following:

a~~1, a' = or b = 1(i

IX, else.

Other extensions yiela X when a =1 and b = X or vice-versa. These more pessimistic
extensions are still monotonic but would tend to cause false negative results.

3.3 System Specification

The system to be implemented has p inputs and mn outputs, each of which may equal 0 or
1. Hence the system may be described as a finite automaton with input alphabet BP and
output alphabet Btm .

Definition 3 A system specification .M is a triple (Q, Next, Out) with

Q:a finite set of states,

Next: the next state function Next: Q x BP -+Q, and

A Out: the output function Out: Q -+ Btm .

Function Next must be a surjection, that is, for every q E Q, there must be a q' E Q and

d C- BP such that q = Next (q', d).

A system with a surjective next state function cannot have any unreachable states. This
restriction is imposed for technical reasons but should not limit the class of actual systems
under consideration, because there would be no reliable way to put the system in a state
that cannot be reached by any sequence of state transitions. This restriction is much
milder than the strong connectivity property assumed by Moore [181.

'Vs. The function Next is extended to input sequences to yield the state after all inputs have
been applied, i.e., to a function Next: Q x -0 -+ Q defined recursively as

Next (q, c) = q

Next (q, a - Y) = Next (Next (q,ca), Y).
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Proposition 1 For any k > 0, The extended function Next: Q x b-- Q is a surjection.

" Proof: By induction on k and the surjectivity of Next when applied to single inputs.

The function FinalOut: Q x 1 -- B m is defined to yield the final output after a sequence
of inputs has been applied, i.e.,

FinalOut(q, a) = Out(Next(q, a)).

Proposition 2

Next(q,a. -) = Next(Next(q,a),/3)

and
FinalOut(q, a. 6) = FinalOut(Next(q, a), 3)

Proof: By induction on the length of 3.

3.4 Circuit Model

A circuit is also a finite automaton but with states encoded by s Boolean variables.

Definition 4 A circuit C is a triple (s,next,out) with

s: the number of state variables,

next: the next state function next: B" x B P --* B', and

out: the output function out: B' -+ B ' .

This definition of a circuit differs significantly from that assumed by other verifiers.
Whereas structural verifiers describe a circuit as a set of interconnected elements, our
abstraction ignores the physical structure altogether. Instead, it views a circuit at the
level seen by the user of a logic simulator. That is, the program, rather than the user, is
responsible for determining the behavior of the circuit given its structure. This level of
detail suffices for the paper, because our goal in verification is only to ensure that the user

uncovers any design errors that can be detected by the simulator.

14

%. ' - - * '-- - ' -

i5 . -



N%. '.

Definition 5 Circuit C implements specification Mv when there exists a relation S C
Q x B- (for "encodes") satisfying:

1. For every q E Q there exists a iE B8 for which q e i.

2. For any q E Q and iE B'

q e Y ==i Out(q) = out(z),

3. For any q E Q, i E B', andi E BP,

q & Next(q, x) e next(i, i).

By this definition, the circuit automaton must "cover" the input-output behavior of the
specification. That is, for any initial state of the specification, there must be an initial
circuit state, such that the two automata would yield identical outputs for any subse-
quent input sequence. However, there may be circuit states that do not correspond to
any specification states, such as those involving invalid combinations of state variables.

* Furthermore, neither automata need be reduced--several circuit states may correspond to
a single specification state and vice-versa.

3.5 Simulator
Wj

For a circuit C = (s,next, out), the simulator maintains state variables i E T', and com-
putes the behavior according to functions next: T ° x T P --+ T ° and out: T ° - T', which
are arbitrary monotonic extensions of the corresponding circuit functions. The simula-
tor implements five commands, although for black-box simulation only the first three are

0 allowed.

ERASE: causes the simulator to set z, to X for 1 < i < s.

C YCLE(x-): causes the simulator to set i to next(i, i).

OUTPUT: causes the simulator to print out(z).

SET(i,b): causes the simulator to set zi to b for b E T.

OBSERVE(i): causes the simulator to print z,.

.d1
',-°
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3.6 Simulation Experiment

Definition 6 A simulation experiment consists of a sequence of simulation commands
beginning with ERASE, as well as a procedure by which the user decides whether the outcome
:s acceptable. The decision procedure can depend only on the values produced by OUTPUT
and OBSERVE commands.

Definition 7 An experiment is effective for specification M when the simulation of a

circuit C can be judged acceptable only if C implements .M.

This condition requires that the verification method cannot produce any false positive
responses.

Definition 8 An experiment is nontrivial when the simulator produces an acceptable out-
come for some circuit (s, next, out) and monoton:c extensions of next and out.

This condition is imposed to eliminate the otherwise effective test of rejecting all circuits.

4 Black-Box Simulation

With black-box simulation, the user is limited to the simulation commands ERASE, CY-
CLE, and OUTPUT. No direct obseriition or modification of the simulator state zi is
permitted. This section identifies the class cf systems that can be verified by black-box

""- simulation.

Define the function SimState: T ---+ T as the state of the simulator after giving an ERASE
command followed by a series of CYCLE commands. More precisely0

SimState() =X

SimState(a . i) next(SimState(a),i)

where X' denotes a vector of size s with each element equal to X.

Similarly, define the function SimOut: 'L - T' as the result that would be printed by an

OUTPUT command following the simulation of some input sequence, i.e.,

SimOut(a) = out(SimState(a)).

A black-box simulation experiment can be viewed as a decision procedure that either
accepts or rejects a circuit based on the values of SimOut(a) for any finite number of

•4 ..' sequences a E '.
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4.1 Definite Systems

Definition 9 For any k > 0, specification M is k-definite if

FinalOut(qj, e) = FinalOut(q2,a)

for any a E 4bk and any qj, q2 E Q,

Definition 10 A specification is definite if it is k-definite for any k. Otherwise it is
indefinite.

This class of sequential systems was first identified by Kleene [13]. Since that time, various
definitions have appeared, viewing sequential systems either as recognizers [19] or trans-
ducers [141. Our definition most closely matches that of Kohavi [14]. However, he defines
a k-definite system as one for which any input sequence of length k places the system in
a unique state, whereas we only require the sequence to cause a unique output. If the
specification automaton is in reduced form, the two definitions are equivalent.

Proposition 3 A k-definite specification is also l-definite for any 1 > k.

Proof: Any sequence in - is of the form /3, a where /3 E -1 and a E -(. For any states
qj, q2 E Q, let q' = Next (qi, ) and q' = Next (q2 ,/3). By Proposition 2 and the fact that
the specification is k-definite:

FinalOut(ql, 3. a-) = FinalOut(q , a) = FinalOut(q', a) = FinalOut(q2 , /. a)

4.2 Monotonicity Properties

In this section we will prove several properties of the logic simulator that follow from the
monotonicity of the simulator functions next and out. As shall be seen, monotonicity pro-

'- vides the primary mechanism by which one can guarantee properties of a circuit knowing
- only its response during simulation.

*_ Lemma 1 The functions SimState and SimOut are monotonic.

Proof: We will prove by induction on the length of a that for any a,,3 E for which
a < /3, we have SimState(a) SimState(3). First, if a = c, then SimState(a) =X'

17



and this vector is less than or equal to any other state vector. Otherwise, if a has nonzero
length and a < 3, then a must be of the form a'. d and 3 must be of the form 3'- b where

a' < 3' and d < b. Assuming, by induction, that SimState(a') _ SirnState(3') and given

that next is monotonic, we get

SirState(a) = next(S irs tate(a'), d) < next(S irs tate(,3'), b) = SimState(iO).

The monotonicity of SimOut follows from the fact that both out and SirnState are mono-
-* tonic, because a composition of monotonic functions is also monotonic.

The monotonicity of SimState and SimOut show how the ERASE command and the three-
valued modeling enhances the power of the simulator. If an ERASE command followed by
a sequence of CYCLE commands causes the simulator to produce a 0 or 1 on some output
or state variable, then this sequence of inputs must also cause the circuit to produce the
same output or state regardless of the initial state. As a special case of this lemma, if
sequence a' is a suffix of a, then SirnOut(a') < SimOut(a), i.e., the simulation of the
shorter sequence yields an output consistent with, but possibly weaker than, the output
produced for the longer one.

Lemma 2 For any k > 0, if SimOut(a) = FinalOut(q, a) for all a E Ok and all q E Q,
then the simulated circuit C implements specification M.

Proof: For any a E Dk let
Q. = {Nezt(q',a)Iq' E Q}

and
Z, = {YE BflSirnState(a) z

That is Q denotes the set of possible states for the specification automaton following
" input sequence a, while ZQ denotes the set of possible circuit states consistent with the
* state of the simulator after simulating the sequence a following an ERASE command. By

the monotonicity of out, we must have that for i E Z,

SimOut(a) = out(SimState(a)) < out(z.

For those sequences a that occur in the condition of the lemma, SimOut(a) is maximal,
i.e., SimOut(a) E B m , in which case we can conclude that out(z) = SimOut(a) for all

Define & as
. efie as =U { (q, z Iq E Q.,,F E Z,,}

aEt h

We must show that & satisfies the three properties of Definition 5.

618J:



First, given that Next is surjective for input sequences of length k (Proposition 1), every
state q must be in set Q, for some a E 4)k. The set Z, cannot be empty, and hence q S i
for some i.

*Second, if q E i, we must have q = Next(q', a) and SimState(a) < i for some q' E Q and
some a E I). From the condition of the lemma it follows that

Out(q) = FinalOut(q',a) = SimOut(a) out(z).

Finally, suppose q 6 i, i.e., for some a = [f1,..., we have q E Q, and SimState(a) < ;.
Consider any i E B P, and let -y = [d1,. .. ,d , ] and /3 = [2,. .. ,dk, ,]. By definition,
Next(q,Y) E Q,. Since /3 < -1 (/3 is a suffix of -y), and both SimState and next are
monotonic

SimState(3) < SimState(-t) = next(SimState(a),i) < next(ii)

Therefore next(5, :i) E Zo by the definition of Zg and hence Next(q, i) & next(F, i).

This lemma provides the key to proving that a simulator can verify that a circuit imple-
ments a k-definite specification by simulating it for all input sequences of length k.

* -::.- Lemma 3 If circuit C implements specification M then for all a E %Y and all/3 E 4 such
that a < /3:

SimOut(a) < FinalOut(q,3)

for all q E Q.

Proof: We will prove by induction on the length of /3 that for some i E B' such that
Next(q, 0) E 5, we have SimState() < i. Given this, we can infer by the monotonicity

; of SimOut and out, and by condition 2 of Definition 5 that

SimOut(a) < SimOut(3) = out(SimState(/3)) < out(z FinalOut(q,3).

,,01 To prove the induction hypothesis, for = e, we have that SimState(/3) = X' and
hence the hypothesis holds trivially. Now suppose that /3 is of the form /3 = ' b, that
Nezt(q,/3') £ ', and SimState(3') '. By definition

Next (q, 3) = Next (Next (q,3'), b)

and therefore by condition 3 of Definition 5

Next(q,/) & next(V',b).
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By the monotonicity of next

SimnStateC3) next (SimnState(3'),) < next(i',b

Hence, if we let Z= next(F', b) the induction hypothesis will hold.

This lemma implies that if the specification has states q, and q2 for which FinalOut(q1 , C)O
FinalOut(q2 , a), for some sequence ai, then some element of SImOut(a) must equal X
even for a correctly designed circuit. This property is used in designing a booby trap for
an indefinite system.

4.3 Expressive Power

We are now ready to prove a main result of this paper, characterizing the capabilities and
limitations of black-box simulation.

Theorem 1 There exists an effective, nontrivial, black-box simulation experiment for spec-

ification .M if and only if .M is definite.

Proof: First, suppose .M is k-definite for some value k. Consider the simulation experiment
consisting of executing the sequence of commands required to compute SimOut(a) for each
a E 'D, and accepting the circuit if SimnOut(a) = FinalOut(q, a) for all a and any choice
of q c Q (in a k-definite specification, the choice of initial state makes no difference.)
Lemma 2 shows that this experiment is effective.

Furthermore, the circuit illustrated in Figure 4, consisting of a p-bit wide, k-bit long shift

register to store the most recent k inputs plus logic to compute the circuit outputs can
* pass this experiment. A similar structure was proposed by Kleene [13] to implement an

arbitrary definite system. More precisely, let s p k and define next as

nexi ii) xiP-k-)'p (k-1) < ip k(2
Z+9 1 <i <p- (k -1)(2

*Partition i into a sequence of vectors [i,F ...... ik] where Fj = (z(j~)., ... ,zi.p,) and define
* out as

out(z) FinalOut(q4.,... .. )

for any choice of q G Q. These functions are extended monotonically by defining next( Y)
according to Equation 2 and letting out be any monotonic extension. It can be seen that for
any sequence a = [di,.. .i, aJ e o, we have SimState(l nd q(a) = aij, the jth element of
vector di, and hence SimOut(t) = FinalOut(q, a). Therefore, the simulation experiment

is nontrivial.
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Figure 4: Universal Implementation of a k-Definite System

Next, suppose .M is not k-definite for any value of k. We use an adversary argument to
show that no nontrivial, black-box experiment for this specification can also be effective.
Assume that there is some nontrivial simulation experiment in which fewer than k CYCLE
commands occur without an intervening ERASE command, for some value k. Since the ex-
periment is nontrivial, there must be a circuit C = (s, next, out) and monotonic extensions
of next and out that produce an acceptable result for the experiment. We will construct a
circuit C' = (s', next', out') that does not implement M. However, we can define monotonic
extensions of next' and out' such that by defining SirnOut' in a manner analogous to the
definition of SimOut, we have SimOut'(a) = SirnOut(a) for any sequence a E 'Ij, for

* which I < k. The simulation experiment cannot possibly distinguish C from C' and hence is
not effective. This argument holds for any value of k, showing that there is no finite upper
bound on the length of a simulation experiment that can distinguish a correct circuit from
a defective one when the specified system is indefinite.

SOn Circuit C' is constructed as illustrated in Figure 5 by taking circuit C and adding extra
logic to implement a "booby trap", i.e., logic that will not affect the outptt value until a
specific input sequence of length k occurs. Designing such a booby trap is no easy task,
because any state variables used by the trap will be set to X whenever the user gives an
ERASE command. For an improper design this could cause C' to produce an X on its
output under conditions when C would not. Similarly, the user might attempt to expose
any traps by presenting inputs with some elements equal to X.
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Figure 5: Circuit with Booby Trap

For the design of C', let 3 = bi,...,bkE] 4 A be some sequence such that M has states
ql, q2 - Q for which FinalOut(qi,, 3) 0 FinalOut(q2 , 03). Such a sequence must exist or else
M would be k-definite. Assume for simplicity, that output m differs for these two cases,
relabeling the outputs if required. The trap consists of a shift register, where each shift
eiement sets its output to its input value when the circuit input matches the corresponding

* element of 3 and clears the output to 0 otherwise. Consequently, input sequence fi will
cause a 1 to propagate through the shift register, forcing output m to 1 when it reaches
the end. Any input sequence a 3 3 of length less than or equal to k will cause the shift
register to produce 0, leaving the circuit output unchanged. The behavior of the circuit for
input sequences a < 3 will depend on the initial state, and hence under such conditions
SimOut'(a) X. However, it can be shown using Lemma 3 that under these conditions
SirMOut,(a) X as well,

The detailed design of circuit C' is rather involved and hence is given in Appendix A rather
* than here. It is also shown that for any 1 < k, any a E 4I1, and any i such that 1 < I < m:

(" 1, m and a="-" SimOut, (a)
m a ~SimOut(a), else

* Hence C' cannot be distinguished from C for any input sequence of length less than k.
On the other hand, since FinalOut,(q,3) $ FinalOut,(q2 ,B3), we must have either
SimOut'(O3) FinalOut,(qj,,3) or SirnOut'(O) FinalOut,(q2 ,,3) and hence by
Lemma 3, C' cannot implement M.
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5 State Transition Simulation

.. To verify circuits implementing a more general class than definite systems, the results of
the previous section imply that a capability beyond black-box simulation is required. At
the opposite extreme, if the user were to completely specify the relation e, we could check
that it satisfies the conditions of Definition 5 by exhaustively simulating all states and
transitions. This approach would work for any class of systems and circuits. In practice,
however, it cannot be applied to circuits of significant size, because the complexity of
completely specifying and checking the relation e would be overwhelming. Exhaustive
simulation, however, provides a basis for developing other simulation methods that over-
come the deficiencies of black-box simulation. It shows that any circuit can be verified if
we introduce sufficient detail about the circuit structure into the verification method.

5.1 The Assertion Method

We would prefer to introduce as little information as possible about the circuit structure
into the verification. Toward this goal we will develop a notation similar to the Floyd-Hoare
assertion method of program verification, along with an associated simulation methodology
for testing assertions.

Definition 11 A circuit assertion is a set of four predicates:

P(z: a precondition on the state variables, P:B -. {true, false}.

I(Y): a condition on the input variables, I: BP --+ {true, false}.

N(zj: a postcondition on the state variables, N: B5 -- {true, false}.

0 (y-): a postcondition on the output variables, O:B" -- {true, false}.

A circuit assertion is denoted by an equation of the form the form P{ I }N A 0.

Definition 12 A circuit satisfies assertion P{ I }N A 0 if N[next(y, zj)] and
O[out(next(i, )] hold for all Y E B ° and iE BP such that P(z and I(Y) hold.

Given a set of circuit assertions, verifying a circuit requires two proofs-that any circuit
satisfying the set of assertions must implement the specification, and that the circuit under
consideration satisfies these assertions. Proving the adequacy of a set of assertions involves
showing that they cover every transition in the specification automaton. At the present
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stage of this research, the set of assertions and a proof of their adequacy must be generated
manually. Although this places additional burden on the user, experience has shown that
far less manual effort is required than with structural verifiers.

5.2 Testing Assertions by Simulation

Once a set of assertions has been devised, a simulator can verify that a particular circuit
satisfies them. First, we must structure the assertions in a particular way.

Definition 13 A nonvoid predicate P: B" -* {true, false} is convex if whenever P(d)J.. and P(9) hold for vectors d and b, then P(cl holds for any vector F for which ci E {ai,bi}
for 1 < i < n.

A convex predicate can be expressed by a formula of the form P(ui) = L, A L 2 A ... A Lk
where each Li is a literal of the form uj = 0 or uj = 1. In general, any assertion can be

*: rewritten as a set of assertions containing only convex predicates.

Definition 14 For convex predicate P(fli) defined over elements of B", the vectc r dp E T n

is defined as
-> 1, P(d-=) ai = 1

[ =ip/i 0, P(a) a,= 0
1 X, else

For a predicate expressed as a conjunction of literals, the corresponding vector is obtained
by setting each element appearing in a literal to its specified value, and all other elements
to X. This vector is analogous to the cubical representation of a product term in a Boolean
expression [20].

Proposition 4 For convex predicate P(Mi) and vector d E B", P(d) if and only if ip < d.

o. Proof: First, assume that P(d) holds. For the vectors to be ordered tip i 5, there must
be at least one element i such that [tip]i = -'ai. This, however, would violate Definition
14, and hence ip < d.

On the other hand, assume lip < d for some a E B". Let b E B" be a vector such that
P(b) holds. The following procedure constructs a sequence of vectors g0, 1 , ... , b, such
that b= 0 , d = 9-, and P(b ) holds for 0 < i < n. From this we can conclude that P(di)
holds. For 1 < i < n each element j of vector b' defined as

;.={ j" 0
ba , j



° .

- The proof that each vector W satisfies P(b') proceeds by induction on i. Since b0  b it
clearly holds for the basis case. Assuming b"- satisfies P(b'-'), observe that b' Wonly if a = -b'' and [ffp], = X. There must be some vector dE B" such that P(d) and

di = -, or else [tip], would equal bi
1 . By convexity, p(W') must hold, because each

element of bW equals an element of d or an element of b'-.

This result shows that a convex predicate can be represented by a single cube.

Theorem 2 For convex predicates P, I, N, and 0 if zN < next(ip, YI) and yo _

out(next(ip, Yj)) for any monotonic extension of circuit functions next and out, then the
circuit satisfies assertion P{ I }N A 0.

: Proof: Suppose z r < next(ip, Y'). By Proposition 4, any vector i E B" for which P(

holds must satisfy z < . Similarly, any vector i E B P for which 1(i) holds must satisfy
* I < Y. Therefore, the monotonicity of next implies that

".-N <. next (ip, <j ! next (F, i)

and N[next(i, jI holds by Proposition 4.

Similarly, when y7, out(next(Fp, Y,)) the monotonicity of next and out imply that
: .: ':...' .. V o <_ o u t (n e x t ( i p , , ,) ) <_ o u t (n e x t (g2, i ) )

and hence 0[out(next(iz)] holds.

This theorem indicates a straightforward procedure to test that a circuit satisfies an as-
sertion with convex predicates. Following an ERASE command, use SET commands to set

all state variables for which [ip]i -X to the appropriate values. Then give the command
CYCLE(Yi) to simulate the prescribed action. Finally, use OBSERVE commands to check
that zi = [iNji for all i such that [FN]i 0 X, and an OUTPUT command to check that
PV < out(i).

J..:.

6 Performance Considerations

Up to this point, we have considered only whether verifying a circuit by simulation was
at all possible. The resulting verification methods were not at all efficient. For example,
brute force application of black-box simulation to verify a k-definite system with m inputs
requires simulating 2k' patterns. Clearly, this is practical only for small values of k and m.
In general, the circuit verification problem is NP-hard as measured in the size of the circuit
and the specification. However, several techniques reduce the complexity to manageable
levels for a large class of circuits.
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6.1 Input Weakening

The logic value X can be used to indicate a "don't care" (or more properly "shouldn't
- care") condition when the circuit behavior being tested should not depend on that par-

ticular input. This allows us to simulate the effects of a number of Boolean sequences
with a single ternary sequence, leading at times to a dramatic reduction in the simulation
complexity. This technique is called "input weakening", because it involves reducing the
information content of the simulation sequences. Monotonicity guarantees that if the re-
sulting response on some output is 0 or 1, then all stronger sequences would give the same
response.

For example, consider a k-bit long, 1-bit wide shift register. Brute force, black-box simu-
lation requires simulating 2k patterns of the form [a,, a2, . .. ,ak], each time checking that

*: the final output equals a,. Since the output of the shift register should depend only on the
first value in the sequence, we can set the input to X for the remainder of the simulation.
This reduces the number of simulation sequences to two: [1, X,..., X1 and [0, X,...,X1,
without compromising the rigor of the simulation. Generalizing this to a shift register of
width m, a total of 2m sequences, each of length k, suffices, consisting of a pair to test
each bit of the data word. Compared to the ad hoe methods most designers use to validate
shift registers (e.g., simulate a randomly chosen input sequence), the proposed method
provides better results at a comparable cost.

*- To develop this idea formally, we define a covering set as a set of ternary sequences that
include all possible Boolean sequences of a given length.

Definition 15 A set A C TI is a covering set for 4k if to every 3 E (I, there corresponds
* some a E A such that a <3.

Theorem 3 For a covering set A of -%, if SimOut(a) = FinalOut(q,/3) for all a E A,
all /3 E Dk such that a < 0, and all q E Q, then the simulated circuit C implements
specification .M.

Proof: By the monotonicity of SimOut, if a < 3, then SimOut(a) < SimOut(3). How-
ever, the assumption that SimOut(a) = FinalOut(q, /3) implies that SimOut(a) E B-,
and hence SimOut(3) = FinalOut(q, /3). Thus, the conditions required by Lemma 2 hold,
and C implements .M.

* Input weakening can also be applied in transition simulation. In fact the simulation se-
quences arising from the assertion method already utilize this technique. If convex predi-
cate P places no conditions on element i of a vector, then corresponding variable is set to
X in the simulation.
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6.2 Symbolic Simulation

At times we cannot avoid the complexity caused by the large number of possible input
combinations that might be applied to a circuit, all of which might be relevant to the values
of the outputs. For these cases, we propose symbolic simulation to reduce the number of
patterns simulated. A symbolic simulator [51 resembles a conventional logic simulator,
except that the input sequences can contain Boolean variables in addition to the constants
1 and 0. During simulation the values of the circuit state and output are Boolean functions
of the variables occurring in the input sequence. A symbolic simulator represents and
manipulates these functions explicitly. The worst-case behavior of such a program gives
no better performance than exhaustive simulation by a conventional simulator. However,
good Boolean manipulation algorithms often lead to far better results. To implement
the verification methodologies described in this paper, a symbolic simulator must be able
to manipulate functions over the three-valued domain {O, 1, X}. The symbolic simulator
MOSSYM [5] solves this problem by representing every circuit variable by a pair of Boolean

S functions, generalizing the encoding of three possible values by two bits.

A symbolic simulator can verify an rn-input, k-definite system by simulating a single
sequence of length k, with each input pattern consisting of m Boolean variables to represent
all possible input values. The resulting output functions will be symbolic representations of
the circuit outputs for every possible input sequence of length k. These can then be tested
for equivalence with functions generated from the system specification. As an example of
verification by symbolic simulation, the above-mentioned shift register would be verified
by simulating the sequence of variables [a,, a 2 , .. , ak] and testing the final output for
equivalence with the function a,. Efficient symbolic manipulation will exploit the fact that
the variables shifting through the register do not interact. Hence a symbolic simulator can
automatically take advantage of the same properties that allow input weakening. Symbolic

'V simulation can also handle cases for which input weakening does not apply. For example,
MOSSYM was able to verify a 16-bit nmos adder using less than 10 minutes of CPU time on a
Digital Equipment Corporation VAX-11/780. In contrast, its more traditional counterpart
MOSSIM 11 [4] would require an estimated 648 years using exhaustive black-box simulation.

The capabilities of symbolic simulator can also be exploited in verifying indefinite systems.
Rather than testing a large number of assertions with predicates containing terms of the
form v = 0 or v = 1, the program would test a smaller set of assertions containing

0, predicates of the form v = a where a is a symbolic variable. That is, a symbolic simulator
can test assertions having the form of universally quantified formulas rather than single
propositions. Furthermore, it does not require the predicates to be convex.

Although a symbolic simulator gives the user a far more abstract view of circuit behavior,
it has no fundamental power beyond that of an ordinary logic simulator. Any information
that symbolic simulation provides could also be obtained by exhaustively simulating the
set of patterns generated by enumerating all combinations of 0 and 1 for the Boolean
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variables.

*"7 Memory Verification Example

To demonstrate the methodology on a more significant task for hardware verification,

consider the static random-access memory (RAM) illustrated in Figure 6. The assertions
required to verify this circuit will be presented in a series of steps, each introducing new
notation and discussing the reasoning behind it. Despite these extensions to the notation,
the underlying principle remains that of state transition simulation.

This circuit holds n = 2 ' bits, where each memory cell i, such that 0 < i < n, consists of a

* feedback path containing electrical nodes Bi and f, along with a pair of access transistors
[10]. As a shorthand, the predicate Store(i,v) expresses the fact that value v E {0, 1} is
stored in memory cell i:

Store(i,v) Bi = v A WI =-v.

The input lines ADDR,, for 0 < j < m, select a particular memory cell. When WRITE = 1,
the value of DIN is written into the selected memory cell. As shorthand, this operation is
expressed by a predicate

Write(i, v) = WRITE = 1 A DIN = v A V(0 < k < m)[ADDR = i4]

where i indicates the kth bit in the binary representation of i. When WRITE = 0, the
value stored in the selected memory cell is produced as output on DOUT. This operation
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is expressed by the predicate

Read(i) - WRITE 0 A V(0 < k < m) ADDR zkj.

Although few additional details of the circuit design are needed for verification, correct
circuit operation depends on the fact that the control lines WORD, equal 0 when the circuit
is quiescent, for 0 < r < V/'. Without this property, the access transistors for more than
one cell in a column could be turned on, causing undesirable interactions. This fact is
formulated as a system invariant

nv - V(o < r < VH)[WORD, = 01.

The invariance of this condition is expressed by a single assertion:

true { true } Inv

That is, following any memory operation, the word lines will return to a quiescent con-
dition. Once the assertion has been established, the invariant Inv can be assumed as a
precondition in all other assertions. Most circuits require some form of system invariant

,- expressing conditions about the control logic that can be assumed true at the beginning
of every input cycle. Devising the invariant requires a combination of analysis and ex-
perimentation. An insufficient system invariant will become immediately apparent during
subsequent simulations, because output or state variables that should have Boolean values
will equal X.

The remaining assertions simply express the operation of a memory. First, for all v E {0, 1}
and for all i such that 0 < i < n, an assertion states that writing v into location i must
cause v to be stored in cell i:

Inv { Write(i,v) } Store(i,v).

Second, for all v E {0, 1} and for all i and j such that 0 < i,j < n and i - j, an assertion
states that writing into location j does not affect the value in cell i:

Inv A Store(i,v) { Write(j,X) } Store(i,v). (3)

Third, for all v E {0, 1} and for all i such that 0 < i < n, an assertion states that reading
location i causes its value to appear on the output:

Inv A Store(i, v) { Read(i) } DOUT = v.

Finally, for all v E {0, 1} and for all i such that 0 < i < n, an assertion states that reading
a value from any location should have no effect on the value stored in location i:

Inv A Store(i,v) { WRITE = 0 } Store(i, v). (4)

"e 'A memory circuit is generally configured as a square array of memory cells with m/2 of the address bits

selecting a row and the remaining selecting a column. Hence there are vn rows.
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The above equations represent a total of 2n 2 
- 6n -+ 1 assertions. The number can be

further reduced by exploiting input weakening for the cases covered by Equation 3. That
is, for an address 2' with bit representation Ki'o, . .. , Zim- I all addresses 1' such that j i are
covered by vectors of the form (X,. .. , X, -1ki, X,... ,X) for 0 < k < m. Thus, Equation 3
can be replaced by the following set of assertions for v E {0, 1}, 0 < Z' < n, and 0 < k < m:

Inv A Store(i, v) I WRITE =1 A ADDRk = -k I Store(z*, v). (5)

This reduces the total number of assertions to 2n log n - - 6n + 1. In practice, many memory
circuits would yield false negative responses for some of the assertions of Equations 4 and

5. The simulation of an assertion that causes the word line of a memory cell to be set to X
would most likely corrupt the value stored in the cell. With more care, however, a set of
assertions can be devised that avoid this problem while maintaining the 0O(n log n) bound

* on the total number of patterns to be simulated.

Considering that even a minimal validation of a memory circuit requires simulating fl(n)
patterns (e.g., read and write every memory location), simulating O(n log n) patterns seems
a very reasonable price to pay for rigorous verification. The efficiency of this verification

* results from an extreme form of input (and state variable) weakening. The verification
isolates each memory location, proving that it can be written and read properly, and that
operations on other memory locations do not corrupt its stored value. During each test,
those memory locations not under consideration are set to X. Should the circuit contain
an undesirable pattern sensitivity, at least one of the tests will fail with an output or state
variable equal to X that should equal 0 or 1.

Devising a simulation sequence to verify this memory requires paying a significant amount
of attention to the details of the circuit design, especially when trying to minimize the num-
ber of assertions. In contrast to black-box simulation, the resulting simulation sequence

* is highly circuit dependent. Compare this effort, however, to that required by other ver-
ifiers. For structural verification the user would be required to specify the operation of
all aspects of the circuit including the address decoders, bit lines, sense amps, and control

* logic. These specifications would require a circuit model that can express such effects as
bidirectional transistor behavior, ratioed circuits, and precharged logic. By comparison,
behavioral verification seems quite straightforward.

8 Discussion

This paper has outlined a method for applying three-valued logic simulation to the task of
hardware verification. Complex circuits can be rigorously verified given only information
about the desired input-output behavior, and possibly some information about the circuit
state variables.

Multi-valued modeling provides the fundamental mechanism by which a circuit can be
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verified knowing little about its internal structure. The requirements placed on the simu-

lator to support verification are fairly mild. Most contemporary logic simulators provide

a value X to avoid the need to find an initial Boolean state of the circuit that does not

cause oscillations [12]. Although an explicit ERASE command may not be provided, it

can easily be implemented, or the same result can be obtained by simply restarting the

program. The monotonicity requirement simply expresses the desirable property that in

* .the presence of X values, the simulator should not set an output or state variable to 0
or 1, when this would not have occurred had some of the X's been 0 or 1 instead. Any
reasonable implementation satisfies this.

The resulting simulation sequences, however, differ greatly from those commonly used
by circuit designers during informal validation. In particular, the state of the circuit is
frequently set to all X's so that any accidental sequential dependencies will be detected.
During most sequences, only a small number of state or input variables are set to Boolean
values, and attention is focused on the effect these values have on the output or new
circuit state. Any accidental dependencies on other state or input variables will manifest
themselves as X's on output or state variables that are expected to have Boolean values.
Most logic simulators have not been designed for this style of simulation. Many use

pessimistic methods of computing the effect of X values, causing them to produce X's
where it can be shown that the true results should be Boolean values. Such a simulator
provides too dull a tool for formal circuit verification, giving many false negative responses.
With greater care, however, simulators can be designed to provide more accurate and
efficient modeling of X's.

This methodology demonstrates several worthwhile simulation practices that could be ap-
plied even when formal verification is not sought. For example, typical simulation runs
consist of many pattern sequences where the behavior of the circuit should not depend on
the relative ordering of these sequences. Preceding each pattern sequence by an ERASE
command would help uncover any accidental pattern sensitivities. As the memory verifi-
cation example showed, a simulator can uncover more potential errors if the user can focus

* on small regions of the circuit at a time, setting to X those input and state variables that
should not affect the behavior in this region. A common practice followed by circuit de-
signers today is to simulate an enormous number of patterns, possibly consuming weeks of
CPU time, hoping that brute force will uncover any error. By following a more disciplined
methodology, shorter simulation runs could be devised that yield more reliable results.

A Design of Circuit C'

- This appendix documents the design of a circuit that cannot be distinguished from a
circuit that implements specification .M for any simulation sequence of length less than k,
as required in the proof of Theorem 1. We assume in this design that ,3 is some sequence
[bl,..., bk] E 4.k such that FinalOut,(q,/#) $ FinalOut,(q2,/3) for two states ql,q2 E Q.

se31



Let s' = s - k. We will define monotonic versions of the functions nezt' and out' to be

used by the simulator directly. The circuit functions are then defined by restricting the

arguments to be Boolean values. Referring to Figure 5 the shift register elements in the
booby trap each have two sets of inputs: a single data input t and a set of control inputs

d. For vector b e BP, define the function of a shift register element 6b: T x T P 
- T as

t, { t,

bg(t, d) = 0, d Eort=0 (6)

.X, < band t #0

That is, the input data is shifted to the output when the control inputs match those given
by vector b. The output is cleared to 0 when at least one control input differs from the
corresponding element of b but does not equal X. To satisfy monotonicity, we adopt the
convention that whenever d < b the output equals 0 only if the data input equals 0, i.e.,
it does not matter whether the input is shifted or the output is cleared, and equals X
otherwise.

The next state function for circuit C' is defined as

next,((z 1 ,.. .z 8), i), i < S

next(Vi) = 6S1(,if, i=s+ 1 (7)
b,.(zi_ 1, Z)s + 2 < i* < s+ k

The output function is defined asX /
out(i) Outi((z,...,zo), i), i < m (8)z,+k V out,((zl,...,z,), Y), i = m

where the v is extended monotonically as in Equation 1.

To prove that circuit C' behaves as claimed, we require the following property about the
value produced by the shift register for a given input sequence.

Lemma 4 For any l < k and any a CE q1 ,

r SimState;+,(a) = O, 0
.:. X, a <

Proof. We will show by induction on i that for any 1, i such that 1 < I < < k, if we
consider any sequence a E 911 then

0, a[bi,....bil,'.SirmState,+i(a ) = 0, a/t [b, ,...b- (Ed

Xa < [ 1
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The statement of the lemma then holds by letting i k.

First, suppose i = 1, in which case either a = E whereby a < 1b1 ] and SimState',-I(a) = X,

or a = a1l for some di E TP, whereby SimState,+1 (a) = 6g,(1, d ). Comparing equation
6 with t = 1 to equation 9 we see that the desired condition holds.

Now assume that equation 9 holds for some value i. Let a = a'. d1+1 be a sequence where
a' E 41, and I < i. Consider the ways a can relate to the sequence [b,..., bi+ 1 in Equation
9.

Equality can hold only if 1 i and both a' = [{b,...,bj] and d1 1 = b, +. Combining
equations 6, 7, and 9 for this case we get

SirnState1 ,+,(a) •6. (SimStatel.,(a'), d1+1) = 6+ (1, 1+1) 1

Incomparability, i.e., a : [b,..., b.+] can hold only if either d1+1 bi+j or a' [b,... ,b].
* In the first case we have

SimState'+j+(a) 6 (SirnState'+,(a),d,+l) = 6,+,(t,d1+l) 0.

In the second case we have

SirnState+,+1 (a) = 6 1+ (SimState,i(a'), d1+1) = 6g,+. (0, d1+1) = 0.
.4.

The sequences may be ordered a < [b1 ,... ,i+ 1] only if either a' < [b,9...,b] and d1+ 1 <
l in which case

S~mtat' () b,+ (SirmState,+(al), d1+1 = bi (X, d,+1 X,

or a' [,..., bi] and d+1 < b,+j in which case

* " SirnState+,+,1 (a) = S + (SimStated+(a'), d,+1) = ,+ (1, df+') X.

Finally, the sequences cannot be ordered a > [bl,..., bi+ 1], because I < i, and [b,. • • ,b]
is maximal.

Lemma 5 For any I < k, any a E T1, and any i such that 1 < i< m:

=.r" = 1, i~ and a= 3
SimOut,(a) =%I. SimOuti(a), else

Proof: For all cases except where i = m and a < /, this result follows from the definition
of out' and from Lemma 4. For a < 03, Lemma 4 tells us that the shift register output

04 33



will equal X. However, given that circuit C implements specification M, Lemma 3 shows
that both SimOutm(a) < FinalOutm(qj,3) and SimOutm(a) < FinalOut,(q2,3). Since
these two values are unequal, we must have

SimOut,(a) = SimOutk(a) = X.
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